scikit_quri.qsvm package#

Submodules#

scikit_quri.qsvm.qsvc module#

scikit_quri.qsvm.qsvc.is_real_device(sampling_backend, is_sim)[source]#
Parameters:
Return type:

TypeGuard[SamplingBackend]

class scikit_quri.qsvm.qsvc.QSVC(circuit, sim=True)[source]#

Bases: object

Parameters:
run_circuit(x)[source]#
Parameters:

x (ndarray[tuple[int, ...], dtype[float64]]) –

Return type:

GeneralCircuitQuantumState

fit(x, y, sampling_backend=None, n_shots=1000)[source]#
Parameters:
predict(xs)[source]#
Parameters:

xs (ndarray[tuple[int, ...], dtype[float64]]) –

Return type:

ndarray[tuple[int, …], dtype[float64]]

scikit_quri.qsvm.qsvr module#

class scikit_quri.qsvm.qsvr.QSVR(circuit)[source]#

Bases: object

Parameters:

circuit (LearningCircuit) –

run_circuit(x)[source]#
Parameters:

x (ndarray[tuple[int, ...], dtype[float64]]) –

fit(x, y)[source]#
Parameters:
predict(xs)[source]#
Parameters:

xs (ndarray[tuple[int, ...], dtype[float64]]) –

Return type:

ndarray[tuple[int, …], dtype[float64]]

Module contents#