Source code for scikit_quri.qsvm.qsvr

# mypy: ignore-errors
from typing import List

import numpy as np
from numpy.typing import NDArray
from ..circuit import LearningCircuit
from sklearn import svm
from quri_parts.core.state import QuantumState, quantum_state
from ..state.overlap_estimator import overlap_estimator


[docs]class QSVR: def __init__(self, circuit: LearningCircuit): self.svc = svm.SVR(kernel="precomputed") self.circuit = circuit self.data_states: List[QuantumState] = [] self.n_qubit: int = circuit.n_qubits
[docs] def run_circuit(self, x: NDArray[np.float64]): # ここにはparametrizeされたcircuitは入ってこないはず... circuit = self.circuit.bind_input_and_parameters(x, np.array([])) state = quantum_state(n_qubits=self.n_qubit, circuit=circuit) return state
[docs] def fit(self, x: NDArray[np.float64], y: NDArray[np.float64]): # self.n_qubit = len(x[0]) kar = np.zeros((len(x), len(x))) for i in range(len(x)): self.data_states.append(self.run_circuit(x[i])) self.estimator = overlap_estimator(self.data_states.copy()) for i in range(len(x)): for j in range(len(x)): kar[i][j] = self.estimator.estimate(i, j) self.svc.fit(kar, y)
[docs] def predict(self, xs: NDArray[np.float64]) -> NDArray[np.float64]: kar = np.zeros((len(xs), len(self.data_states))) new_states = [] for i in range(len(xs)): x_qc = self.run_circuit(xs[i]) new_states.append(x_qc) self.estimator.add_data(new_states) offset = len(self.data_states) for i in range(len(xs)): for j in range(len(self.data_states)): kar[i][j] = self.estimator.estimate(offset + i, j) pred: NDArray[np.float64] = self.svc.predict(kar) return pred